Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escaler business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Application

Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Quality in Motion

Principle

Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Efficiency

- Regenerative Converter
- Traction Machine with PM Motor
- LED Lighting
- Energy-saving Features

Ecology

- Ecological Converter
- Traction Machine with PM Motor
- LED Lighting
- Energy-saving Features

Safety

- Emergency Operation
- Door Safety Devices
- User-oriented Design

Comfort

- Door Operation
- Door Safety Devices
- User-oriented Design

Efficiency

- Group Control Systems
- Cooperative Optimization Assignment
- Energy-Saving Operation–Allocation Control
- Dynamic Rule-set Optimizer
- Destination Oriented Allocation System

Safety and Comfort

- Emergency Operation
- Door Safety Devices
- User-oriented Design

We strive to be green in all of our business activities.

We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Contents

- Ecology
- Using Energy Wisely
- Regenerative Converter
- Traction Machine with PM Motor
- LED Lighting
- Energy-saving Features
- Smooth Mobility through Efficient Group Control
- Group Control Systems
- Cooperative Optimization Assignment
- Energy-Saving Operation–Allocation Control
- Dynamic Rule-set Optimizer
- Destination Oriented Allocation System
- Providing a Safe, Comfortable Ride
- Emergency Operation
- Door Safety Devices
- User-oriented Design
- Standard Design
- Features
- Basic Specifications
- Important Information on Elevator Planning

Application

- Mitsubishi Electric Standard
- NEXIEZ-MR
- EN81-1
- NEXIEZ-MR
- GB7588
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

| Milestones of Energy-saving Technologies in Elevator Development |
|-----------------|-----------------|
| **Motor** | 1970 |
| **1980** | Induction Motor |
| **1990** | PM motor |
| **2000** | PM motor |
| **2010** | PM motor |
| **Traction machine** | |
| **AC2 control** | |
| **ACVVV control** | |
| **VVVF control** | Power consumption |
| **100%** | 95% |
| **32%** | 26% |
| **151.9** | |
| **CO2 emissions (kg/year)** | |
| **37%** | 132 |
| **30%** | 112 |

Notes:
1. Alternative current, variable voltage
2. Variable voltage, variable frequency
3. CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.
4. Calculated from power consumption with a coefficient of 0.4 kilograms/kilowatt-hour.
5. The CO2 emissions values in this table vary according to conditions.

Reusing Energy

Regenerative Converter (PCNV) (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of up to 35%. (Reduction in CO2 emissions: 1400 kg/year) In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Traction Machine with PM Motor

The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO2 emissions. In addition, we have adopted a 2:1 (single-wrap) roping system, which lessens load on the traction machine, and allows further reductions in traction machine size.

LED Lighting (Optional)

Energy-efficient LEDs consume less power than conventional lamps. Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, the long service life eliminates the need for frequent lamp replacement.

Energy-saving Features

Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars (ESO-N) (Optional for ΣAI-22)

The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control (ESO-W) (ΣAI-2200C only)

Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic (CFO-A/CLO-A)

The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C
ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.

Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)
When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control (ESO-W) (ΣAI-2200C)
This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Dynamic Rule-set Optimizer (ΣAI-2200C)

Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Allocation System (DOAS) (ΣAI-2200C) (Optional)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement (hall arrangement without hall lantern*)
Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

*Hall arrangement with hall lantern is available as an option.
Emergency Situations

Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

Power failure
- **Mitsubishi Emergency Landing Device (MELD) (Optional)**
 Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

Operation by Emergency Power Source — Automatic/Manual (OEPS) (Optional)
Upon power failure, predetermined car(s) use a building’s emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) will resume normal operation.

Fire
- **Fire Emergency Return (FER) (Optional)**
 When a key switch or a building’s fire sensors are activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.

Firefighters’ Emergency Operation (FE) (Optional)
When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate fire-fighting and rescue operations.

Earthquake
- **Earthquake Emergency Return (EER-P/EER-S) (Optional)**
 When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.

*Please refer to page 16 for details.

For Safe Boarding

Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

For Comfortable Use

User-oriented Design
Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font
The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

Indication examples

LCD Position Indicators (Car/hall) (Optional)
Clear, bright LCD indicators deliver information clearly and effectively.

Colors
Select the best color from our five popular and eye-catching background colors.

- **Stylish Blue**
- **Modern White**
- **Urban black**
- **Fine Green**
- **Elegance Brown**
Car

Car Design Example

- Walls: SUS-HL
- Transom panel: SUS-HL
- Doors: SUS-HL
- Front return panels: SUS-HL
- Kickplate: Aluminum
- Flooring: PR803
- Car operating panel: CBV1-C760

Hall

Hall Design Example

- Jamb: E-102
- Doors: SUS-HL
- Hall position indicator and button: PIV1-A710N

Car operating panel

- Lighting: Central lighting with a milky white resin lighting cover
- Ceiling: Painted steel sheet (Y033)
- CBV1-C760
- Segment LED indicators
- Tactile button with yellow-orange lighting

Hall position indicators and buttons

- Metal-like resin faceplates
- PIV1-A720N

Standard Design

Notes:
1. Maximum number of floors: 22 floors
2. Some letters of the alphabets are not available. Please consult our local agents for details.

Features (1/2)

EMERGENCY OPERATIONS AND FEATURES

- **Earthquake Emergency Return**
 - EBR
 - EBR-S
- **Emergency Car Lighting**
 - ECL
- **Fire Emergency Return**
 - FER
- **Firefighters’ Emergency Operation**
 - FE
- **Hallway Mitsubishi Elevators & Controls Monitoring and Control System**
 - WP-W
- **Hallway Mitsubishi Emergency Lighting Device**
 - MELD
- **Operationally Emergency Power Source—Automatic Manual**
 - OEPS
- **Supervisory Panel**
 - WP

DOOR OPERATION FEATURES

- **Automatic Door Open Time Adjustment**
 - DOT
- **Automatic Door Speed Control**
 - DOAC
- **Door Load Detector**
 - DLD
- **Door Nudging Feature**
 - With Wiper
 - NWD
- **Door Sensor Self-diagnosis**
 - DODA
- **Electronic Doorman**
 - EDM
- **Extended Door Open Button**
 - DOKO-TB
- **Hall Motion Sensor**
 - HMS
- **Multi-beam Door Sensor—Signal Type**
 - MBSS
- **Reopen with Hall Button**
 - ROHB
- **Repeated Door Close**
 - RDC
- **Safety Door Edge**
 - SDE
- **Safety Ray**
 - SR

Features (2/2)

Notes:
1. 1C to 2C: (1) car selection collective - Standard, 2C to 8C: (2) car-group control system - Optional, 9C to 16C: (3) A-car group control system - Optional, 17C to 20C: (4) B-car group control system - Optional
2. Standard*: Optional †: Not applicable to 1C-2C (3): Not applicable
3. *: When 2C-8C, please consult our local agents.
4. #: Please consult our local agents for the production terms, etc.

16
Features (2/2)

Operational and Service Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendant Service</td>
<td>AS</td>
<td>Elevator operation where an elevator can be operated using the buttons and switches/panels of the car operating panel, allowing smooth boarding by passengers.</td>
</tr>
<tr>
<td>Automatic Bypass</td>
<td>ABP</td>
<td>It is forbidden to bypass calls in order to maintain maximum operating efficiency.</td>
</tr>
<tr>
<td>Automatic Call手</td>
<td>SAC</td>
<td>An elevator can stop at every floor to allow passengers to enter/exit.</td>
</tr>
<tr>
<td>Backup Operation for Group Control Microprocessor</td>
<td>GCBK</td>
<td>The operation by car controllers which automatically maintains elevator operation in the event of a malfunction or transmission failure in the group control microprocessor.</td>
</tr>
<tr>
<td>Car Call Cancelling</td>
<td>CCC</td>
<td>When a car controller detects that a car call is in the incorrect direction, the system regards calls in the other direction as mistakes and cancels them from the memory.</td>
</tr>
<tr>
<td>Car Fan Shut Off — Automatic</td>
<td>CFW-A</td>
<td>If there are no calls for a specific period, the car ventilation fan will automatically turn off to conserve energy.</td>
</tr>
<tr>
<td>Continuity of Service</td>
<td>COS</td>
<td>A system which is reestablished automatically from group control operation in the event of a malfunction.</td>
</tr>
<tr>
<td>False Call Cancelling — Automatic</td>
<td>FCC-A</td>
<td>The number of registered car calls can be correctly identified by canceling calls not corresponding to car calls, if calls are canceled to avoid unnecessary stops.</td>
</tr>
<tr>
<td>Independent Service</td>
<td>IND</td>
<td>Exclusive operation where one or a few elevators are used for independent use, such as maintenance or repair, and beyond to car service.</td>
</tr>
<tr>
<td>Non-service to Specific Floors — Car Button Type</td>
<td>NS-CB</td>
<td>To enhance service to specific floors, calls can be reserved using the car operating panel. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Non-service to Specific Floors — Time Type</td>
<td>NS-ST</td>
<td>To enhance service to specific floors, calls can be reserved using the car operating panel. This function is automatically deactivated during emergency operation.</td>
</tr>
<tr>
<td>Out-of-service by Hall Key Switch</td>
<td>OSH</td>
<td>NS-CB</td>
</tr>
<tr>
<td>Out-of-service remote</td>
<td>OSH-R</td>
<td>This 5.7-inch LCD for elevator halls shows the date and time, car position, travel direction and elevator status messages.</td>
</tr>
<tr>
<td>Overload Holding Stop</td>
<td>OLS</td>
<td>A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open and the car will not leave the floor until enough passengers exit the car.</td>
</tr>
<tr>
<td>Reprogrammable Converter</td>
<td>PCNV</td>
<td>An energy conservation power-supplied function incorporated in the machine car is used by the elevator system in the building.</td>
</tr>
<tr>
<td>Return Operation</td>
<td>RTO</td>
<td>Digital key switch on the supervisory panel, etc., a car can be called to a specific floor after responding to car calls, and then automatically taken out of service.</td>
</tr>
<tr>
<td>Safe Landing</td>
<td>SLF</td>
<td>If the elevator stops between floors due to elevator malfunctions, the car automatically checks the cause, and if it is considered safe to move the car, the car will move to the nearest floor on a low gear, and the doors will open.</td>
</tr>
<tr>
<td>Secret Call Service</td>
<td>SCS-B</td>
<td>Calls for deceased for specific floors can be reserved only by entering secret codes using the car buttons on the car operating panel. This function is automatically deactivated during emergency operation.</td>
</tr>
</tbody>
</table>

Group Control Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank-up Backup Operation</td>
<td>BSO</td>
<td>Hall buttons and the car call buttons such as buttons can be decoded into several groups for independent group control operations to serve specialists or different floors.</td>
</tr>
<tr>
<td>Closest-priority Service</td>
<td>CNSP</td>
<td>A function to give priority on the car closest to the floor where a hall call button is pressed, or to reserve the lowest doors of the car for the person who pressed hall call button on that floor. (Cannot be combined with hall call hold options.)</td>
</tr>
<tr>
<td>Congested-Floor Service</td>
<td>CF</td>
<td>The timing of car allocation and the number of cars to be allocated to floors where waiting on floors or lift cars exceeds 30 second and the traffic exceeds the passenger carrying capacity. The passenger is informed of the car service in the elevators that are carrying passengers and waiting passengers and the car operating panel.</td>
</tr>
<tr>
<td>Destination-Oriented Allocation System</td>
<td>DAS</td>
<td>An algorithm where allocation decisions shall be made based on passenger behavior patterns, which will server the best. The passenger does not need to press a button in the car. By comparing passenger behavior patterns, it becomes possible to provide passenger service that is quick and minimizes waiting time. (Cannot be combined with some features.)</td>
</tr>
<tr>
<td>Down Peak Service</td>
<td>DPS</td>
<td>Controls the number of cars to be allocated and the timing of car allocation in order to meet increased demands for downtown travel during off-peak timing, hotel check-out time, etc., or to minimize passenger waiting time.</td>
</tr>
</tbody>
</table>

Signal and Display Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Car Operating Panel</td>
<td>ACS</td>
<td>An additional car control panel which can be installed for large-capacity elevators, heavy-traffic elevators, etc.</td>
</tr>
<tr>
<td>Basic Announcement</td>
<td>AAN-B</td>
<td>A synthetic voice and/or buzzer alarm when passengers inside elevator that the elevator operation has been temporarily interrupted by overloading or a similar cause (available in limited languages)</td>
</tr>
<tr>
<td>Car Alarm Chime</td>
<td>AECC</td>
<td>Bell-type chimes are indicated to a car call on occasion. (The chimes are mounted on the elevator car. At the terminal, the chimes can be turned off.)</td>
</tr>
<tr>
<td>Car LCD Position Indicator</td>
<td>CID</td>
<td>This 5.7-inch LCD for operating panels shows the date and time, car position, travel direction and elevator status messages. In addition, customized video images, video displays on full-screen or partial-screen formats.</td>
</tr>
<tr>
<td>Car LCD Position Indicator</td>
<td>CID-R</td>
<td>This 5.7-inch LCD for operating panels shows the date and time, car position, travel direction and elevator status messages. In addition, the operator can display their personal information on the LCD.</td>
</tr>
<tr>
<td>Flashing Hall Lantern</td>
<td>FHL</td>
<td>A full bell, which corresponds to a car service direction, shows to indicate the car that will serve.</td>
</tr>
<tr>
<td>Hall Information Display</td>
<td>HD</td>
<td>This 5.7-inch LCD for operating panels shows the date and time, car position, travel direction and elevator status messages. In addition, the operator can display their personal information on the LCD.</td>
</tr>
<tr>
<td>Hall LCD Position Indicator</td>
<td>HD-S</td>
<td>This 5.7-inch LCD for operating panels shows the date and time, car position, travel direction and elevator status messages. In addition, the operator can display their personal information on the LCD.</td>
</tr>
<tr>
<td>Immediate Prediction Indication</td>
<td>AL</td>
<td>A system which allows communication between passengers inside the car and the building personnel.</td>
</tr>
<tr>
<td>Intercommunication System</td>
<td>IIP</td>
<td>A system which allows communication between passengers inside the car and the building personnel.</td>
</tr>
<tr>
<td>Second Car Prediction</td>
<td>TCP</td>
<td>The doors are closed in the second car to accelerate the time that one can announce all waiting passengers, the hall lantern of the next car to serve the hall call is lit.</td>
</tr>
<tr>
<td>Voice Guidance System</td>
<td>AAGG</td>
<td>Information voice service such as the current floor or service direction is given to passengers inside the car.</td>
</tr>
</tbody>
</table>

Notes: 1. 2C-BBC (1-car selective collective) - Standard, 2C-BBC (2-car group control system) - Optional, 2C-LP (2nd to 4th floor group control system) - Optional, 2C-BBC (2nd to 8th floor group control system) - Optional 2. Standard 3. Optional 4. Not applicable to 2C-BBC 5. Not applicable 6. When the DOAS is applied, the Safety Line (SL) or Multi-beam Door Sensor feature should be installed.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>400</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P60</td>
<td>10</td>
<td>300</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P9</td>
<td>9</td>
<td>550</td>
<td>1.0</td>
<td>CO</td>
<td>160×2100</td>
<td>1740×1500</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>350</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P15</td>
<td>15</td>
<td>1000</td>
<td>1.0</td>
<td>CO</td>
<td>160×2100</td>
<td>1740×1500</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>750</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P13</td>
<td>13</td>
<td>500</td>
<td>1.0</td>
<td>CO</td>
<td>160×2100</td>
<td>1740×1500</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P20</td>
<td>20</td>
<td>1350</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
<tr>
<td>P24</td>
<td>24</td>
<td>1600</td>
<td>1.0</td>
<td>CO</td>
<td>140×2850</td>
<td>1750×1590</td>
<td>1855×2720</td>
<td></td>
<td>1250×1520</td>
</tr>
</tbody>
</table>

Machine Room Plan Example

- Machine room width: 2400 mm
- Counterweight side drop: 2100 mm
- Entrance: 1700 mm
- Car internal dimensions: Width = 700 mm, Height = 2000 mm
- Access door: Width = 700 mm, Height = 2000 mm

Hoistway Plan

- Hoistway width: 2400 mm
- Entrance width: 1700 mm
- Car internal dimensions: Width = 700 mm, Height = 2000 mm
- Access door: Width = 700 mm, Height = 2000 mm

Mitsubishi Electric Standard

Horizontal Dimensions

- Rated Capacity: 65 kg
- Rated Speed: 2.5 m/sec

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum floor height (mm)</th>
<th>Minimum machine room floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>90</td>
<td>45</td>
<td>40</td>
<td>1800</td>
<td>2200</td>
</tr>
<tr>
<td>1.5</td>
<td>120</td>
<td>75</td>
<td>50</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>2.0</td>
<td>180</td>
<td>120</td>
<td>60</td>
<td>2200</td>
<td>2500</td>
</tr>
<tr>
<td>2.5</td>
<td>210</td>
<td>160</td>
<td>80</td>
<td>2400</td>
<td>2500</td>
</tr>
</tbody>
</table>

Elevation

- Hoistway section for counterweight side drop is slightly different from the figure.
- Layout (position of control panel, etc.) differs depending on capacity.

Applicable Standards

NEXIEZ-MR complies with Mitsubishi Electric standard®.

For details of compliance, please consult our local agents.

* Based on, but not fully complying with the Building Standard Law of Japan, 2009.
Basic Specifications

Horizontal Dimensions

Code number	Number of persons	Rated capacity (kg)	Rated speed (m/sec)	Door type	Entrance width (mm	Car internal dimensions (mm)	Counter-	Minimum hoistway dimensions (mm)	Minimum machine	Machine room width (mm)	Minimum pit depth (mm)
-------------	-------------------	---------------------	---------------------	-----------	-------------------	-----------------------------	weight	AH×BH/car	room dimensions	AM×BH/car	AR×BM
P11	11	825	1.0	CO	900	1400×1350	Rear	1990×1500	1970×1930	2200×1500	1520
P14	14	1050	1.6	CO	1100×1200	2400×1440	Side	2700×1300	2650×1730	3300×1200	1150
P17	17	1275	2.5	CO	1100×1200	2400×1440	Rear	2700×1300	2650×1730	3300×1200	1150
P18	18	1350	2.0	2S	1100×1200	2400×1440	Rear	2700×1300	2650×1730	3300×1200	1150

* Terms of the table
 - The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
 - Rated capacity is calculated as 75kg per person, as required by EN81-1.
 - CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
 - Rated capacity is calculated as 75kg per person, as required by EN81-1.
 - The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>825 Capacity 5:1.50</td>
<td>20</td>
<td>10</td>
<td>4400</td>
<td>1900</td>
<td>1500</td>
<td>2200</td>
</tr>
<tr>
<td>1.0</td>
<td>825 Capacity 10:1.50</td>
<td>40</td>
<td>10</td>
<td>4700</td>
<td>1900</td>
<td>1500</td>
<td>2500</td>
</tr>
<tr>
<td>2.0</td>
<td>825 Capacity 2:1.00</td>
<td>40</td>
<td>10</td>
<td>4700</td>
<td>1900</td>
<td>1500</td>
<td>2500</td>
</tr>
<tr>
<td>2.5</td>
<td>825 Capacity 2:1.00</td>
<td>40</td>
<td>10</td>
<td>4700</td>
<td>1900</td>
<td>1500</td>
<td>2500</td>
</tr>
</tbody>
</table>

Notes:
- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.
- * Maximum travel is 90m when the counterweight is installed in a side drop position.
- * This dimension does not include the height of hoisting beam. The height of hoisting beam must be 100mm or more.
- * Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm.

Elevation

Applicable Standards
NEXIEZ-MR complies with EN81-1.
Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Car internal width (mm)</th>
<th>Car internal depth (mm)</th>
<th>Minimum hoistway dimensions (AH x BH)</th>
<th>Minimum machine room dimensions (AM x BM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>10</td>
<td>750</td>
<td></td>
<td>CO</td>
<td>1400 x 1300</td>
<td>1500</td>
<td>1750 x 1500</td>
<td>2020 x 2680</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td></td>
<td>CO</td>
<td>1400 x 1350</td>
<td>1600</td>
<td>1700 x 1500</td>
<td>2100 x 2130</td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td></td>
<td>CO</td>
<td>1400 x 1300</td>
<td>2100</td>
<td>1800 x 1500</td>
<td>2400 x 2030</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td></td>
<td>CO</td>
<td>1900 x 1350</td>
<td>2400</td>
<td>2400 x 1500</td>
<td>2900 x 2010</td>
</tr>
<tr>
<td>P15</td>
<td>16</td>
<td>1000</td>
<td></td>
<td>CO</td>
<td>1800 x 1500</td>
<td>2600</td>
<td>2400 x 1500</td>
<td>3500 x 2200</td>
</tr>
<tr>
<td>P16</td>
<td>17</td>
<td>1275</td>
<td></td>
<td>CO</td>
<td>2600 x 1500</td>
<td>2900</td>
<td>2400 x 1500</td>
<td>4100 x 2500</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td></td>
<td>CO</td>
<td>2000 x 1500</td>
<td>2400</td>
<td>2400 x 1500</td>
<td>4000 x 2200</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1500</td>
<td></td>
<td>CO</td>
<td>1800 x 1680</td>
<td>2400</td>
<td>2400 x 1500</td>
<td>4000 x 2200</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>900</td>
<td>35</td>
<td>25</td>
<td>1800</td>
<td>1500</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1.75</td>
<td>350</td>
<td>10</td>
<td>10</td>
<td>2400</td>
<td>1500</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>2.5</td>
<td>400</td>
<td>10</td>
<td>10</td>
<td>2400</td>
<td>1500</td>
<td>1900</td>
<td>1900</td>
</tr>
</tbody>
</table>

Notes

- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.
- Rated capacity is calculated as 75kg per person, as required by GB7588.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- Dimensions AH and BH for rated speed 2.5 m/sec in a single hoistway is different from the above table to prevent a wind noise.
- Control Panel
- **Elevation**

Applicable Standards

NEXE-ZMR complies with GB7588.
Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work, and are therefore the responsibility of the building owner or general contractor:

- Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
- Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
- Architectural finishing of the machine room floor, and the walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed elevator hoistway.
- A ladder to the elevator pit.
- Cutting the necessary openings and joists.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, and intermediate beams when two or more elevators are installed.
- All other work related to building construction.
- The machine room power-receiving panel and the electrical wiring for illumination, plus the electrical wiring from the electrical room to the power-receiving panel.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

* Work responsibilities in installation and construction shall be determined according to local laws. Please consult our local agents for details.

Elevator Site Requirements

- The temperature of the machine room and elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention against icing and condensation occurring due to a rapid drop in the temperature shall be provided in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of +5% to –10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.
State-of-the-Art Factories...
For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety first, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works and 12 overseas manufacturing factories are utilized in a global network that provides sales, installation and maintenance in support of maintaining and improving product quality. As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE: TOKYO BLDG., 2-7-3, MARRHIGUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

Safety Tips: Be sure to read the instruction manual fully before using this product.